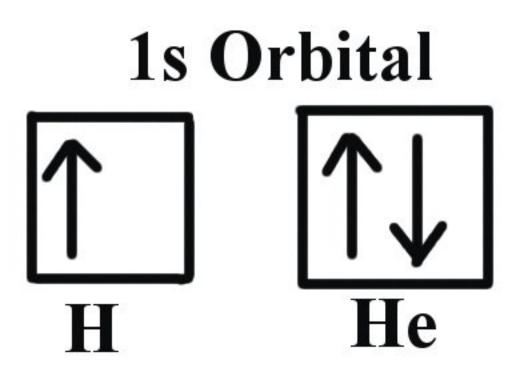
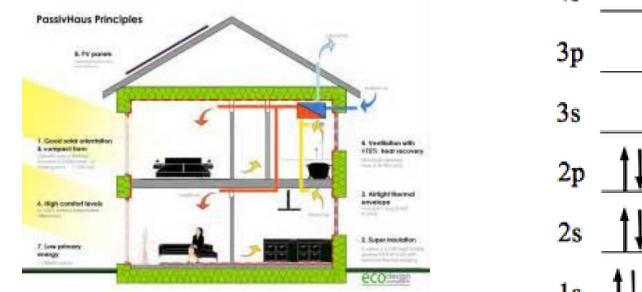

[3.3] Energy Level Diagrams and Configurations

1A	2A 3A		4A	4A 5A		7A		
1 H 1s ¹								E
3 Li 1s ² 2s ¹	4 Be 1s ² 2s ²	5 B 1s ² 2s ² 2p ¹	6 C 1s ² 2s ² 2p ²	7 N 1s ² 2s ² 2p ³	8 0 1s ² 2s ² 2p ⁴	9 F 1s ² 2s ² 2p ⁵	2:	
11 Na [Ne] 3s ¹	12 Mg [Ne] 3s ²	13 AI [Ne] 3s ² 3p ¹	14 Si [Ne] 3s ² 3p ²	15 P [Ne] 3s ² 3p ³	16 S [Ne] 3s ² 3p ⁴	17 CI [Ne] 3s ² 3p ⁵	3:	

Energy Level Diagrams


Energy level diagrams are used to represent the **electron arrangement** in an atom

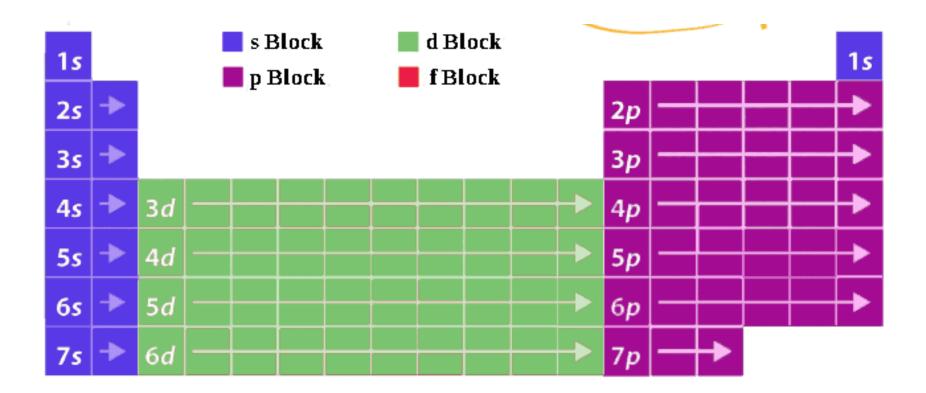
Energy


Pauli's Exclusion Principle

- No two electrons have the same 4 quantum numbers
- One electron will **spin up**, the other will **spin down**
- We write the electron that spins up first.

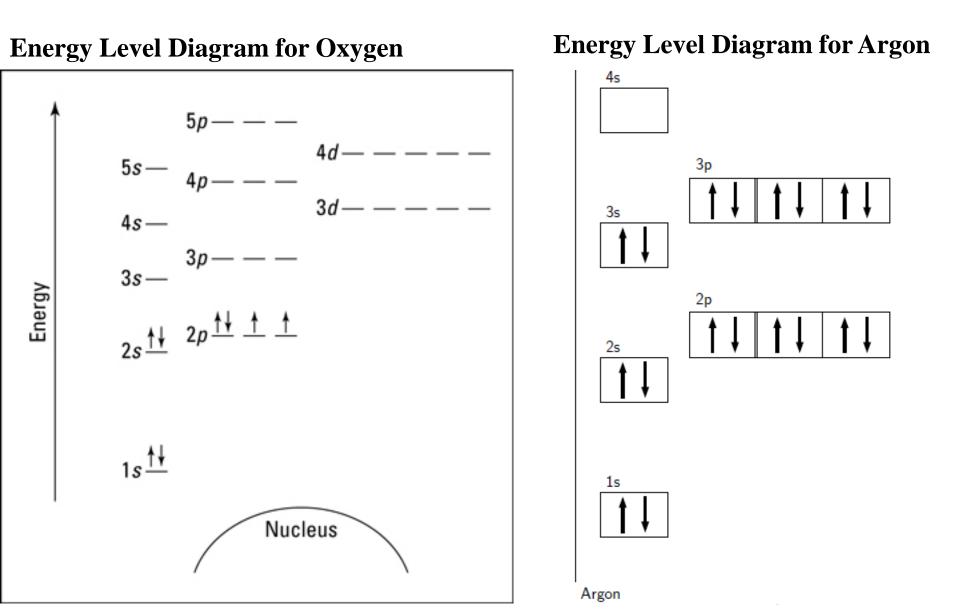
Aufbau Principle

- The number of electrons in an atom is equal to the atomic number
- Each added electron will enter the orbitals in the order of **increasing energy**
- Orbitals of lowest energy are filled first
- An orbital cannot take more than 2 electrons

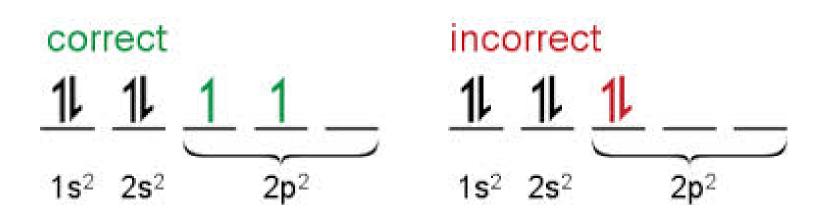


Aufbau Principle

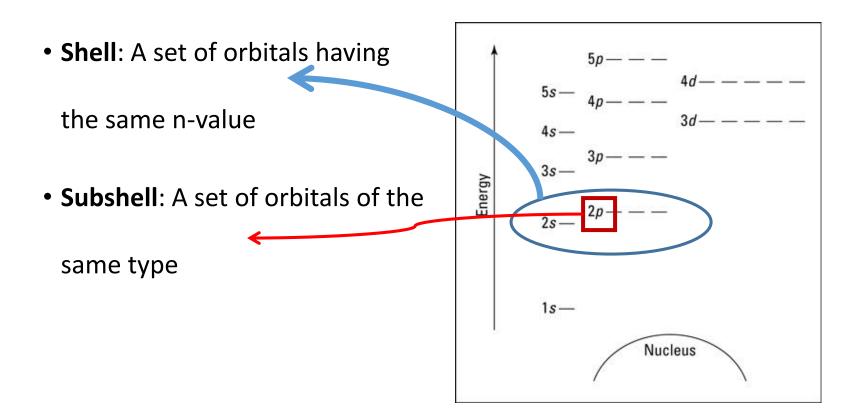
ፇ 51<u>5c</u> <u>6</u>d 6p 65 5


The diagonal rule for electron filling order.

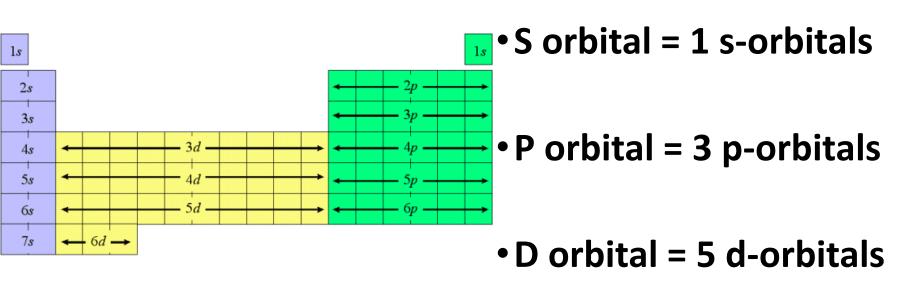
Shells and Subshells

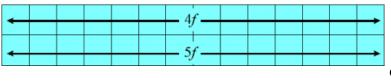


Energy Level Diagrams

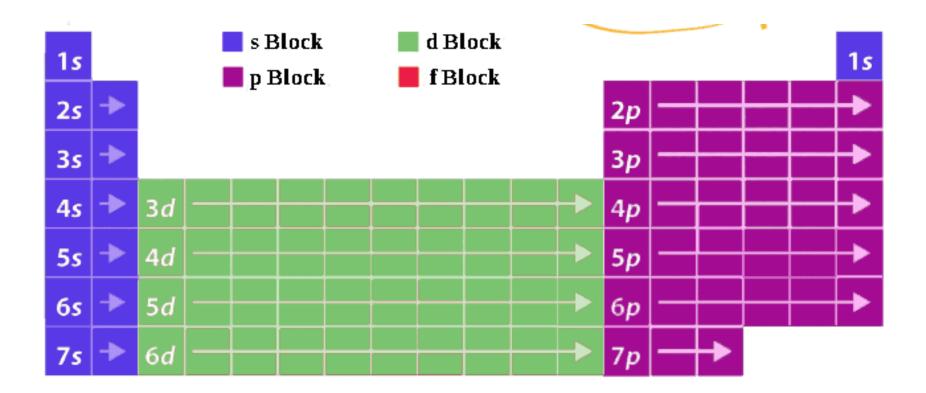


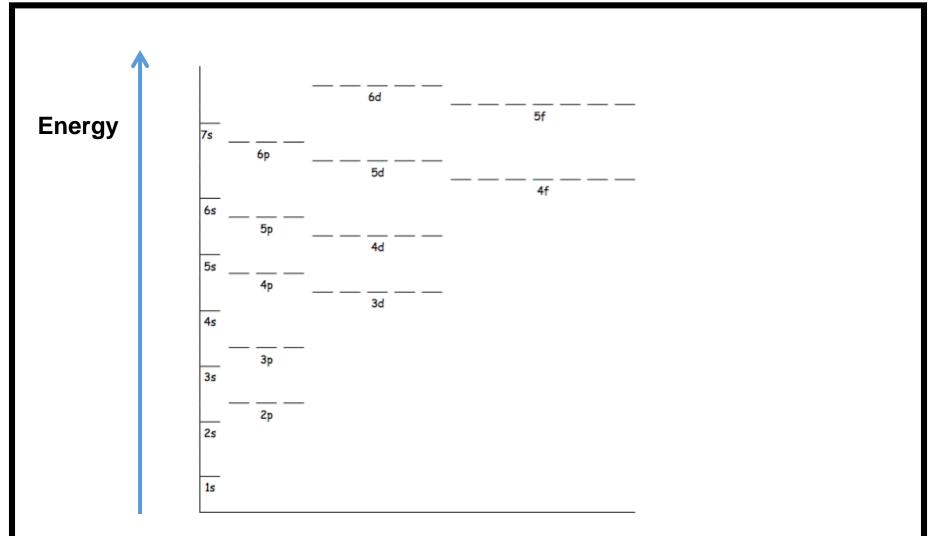
Hund's Rule


- Every orbital in a subshell is singly occupied with **one electron** before any one orbital is doubly occupied
- All electrons in singly occupied orbitals have the same spin.
- Analogy: When boarding the bus, you would take an empty seat rather than sit beside someone.

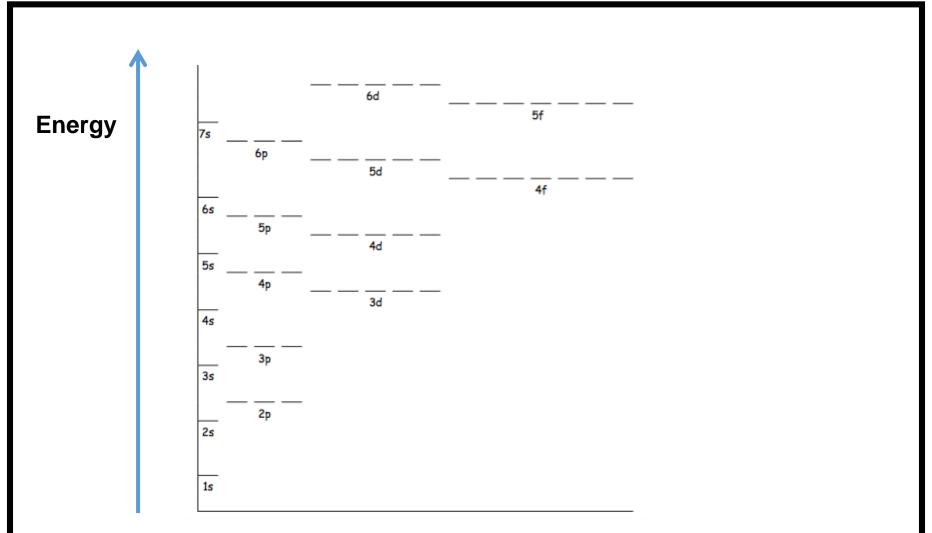


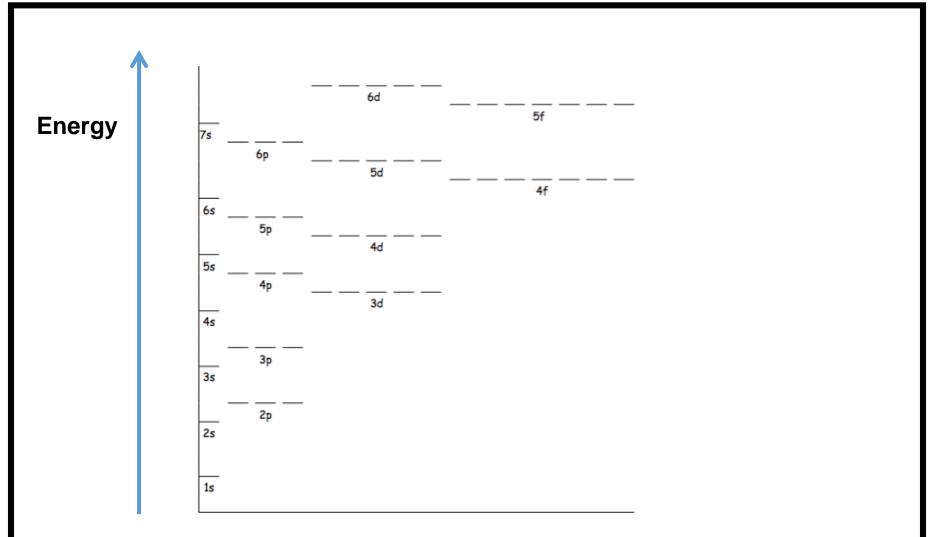
Vocabulary


Shells and Subshells


• F orbital = 7 f-orbitals

Shells and Subshells




Draw the electron energy diagram for Lithium

Draw the electron energy diagram for Nitrogen

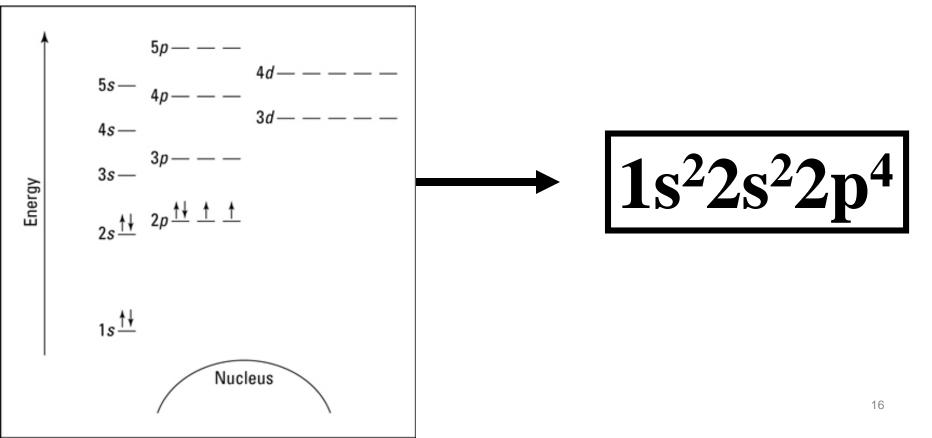
Draw the electron energy diagram for Calcium

Complete Electron Configuration

He₁s

The thing we are finding the electron configuration for

of electrons in the orbital


Principal quantum number "n"

Secondary quantum number "*l*"

Complete Electron Configuration

You can transfer the information from your energy level diagrams to complete electron configurations to indicate the arrangement of electrons

Energy Level Diagram for Oxygen

Write the complete electron configuration for Sodium

Write the complete electron configuration for Neon

Write the complete electron configuration for Iron

Write the complete electron configuration for Sodium

Na: 1s2, 2s2, 2p6, 3s1

Write the complete electron configuration for Neon

Write the complete electron configuration for Iron

Write the complete electron configuration for Sodium

Na: 1s2, 2s2, 2p6, 3s1

Write the complete electron configuration for Neon

Write the complete electron configuration for Iron

Write the complete electron configuration for Sodium

Na: 1s2, 2s2, 2p6, 3s1

Write the complete electron configuration for Neon

Write the complete electron configuration for Iron

Fe: 1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d6

Exceptions to Complete Electron Configuration

<u>Chromium & Copper</u> are the two exceptions to the electron configuration (They do not follow the general pattern). They are more stable with this electron arrangement

Element Name and Symbol	Atomic Number	Common Oxidation States	[]	Electron Configuration
Scandium (Sc)	21	+3	Sc: [Ar] 4s ² 3d ¹	Sc: [Ar] $\frac{1}{4s}$ $\frac{1}{3d}$
Titanium (Ti)	22	+4	Ti: [Ar] 4s ² 3d ²	Ti: [Ar] 1_{4s} 1_{3d}
Vanadium (V)	23	+2, +3, +4, +5	V: [Ar] 4s ² 3d ³	V: [Ar] $\frac{1}{4s}$ 1 1 1 1 1 1 1 1 1 1
Chromium (Cr)	24	+2, +3, +6	Cr: [Ar] 4s ¹ 3d ⁵	$Cr: [Ar] \stackrel{1}{\xrightarrow{4_s}} \stackrel{1}{\xrightarrow{1}} \stackrel{1}{\xrightarrow{1}} \stackrel{1}{\xrightarrow{1}} \stackrel{1}{\xrightarrow{1}} \stackrel{1}{\xrightarrow{1}}$
Manganese (Mn)	25	+2, +3, +4, +6, +7	Mn: [Ar] 4s ² 3d ⁵	$\operatorname{Mn:} [\operatorname{Ar}] \xrightarrow{1}_{4s} \xrightarrow{1}_{3d} \xrightarrow{1}_{3d}$
Iron (Fe)	26	+2,+3	Fe: [Ar] 4s ² 3d ⁶	Fe: [Ar] $1 + 1 + 1 + 1$ 4s $3d$
Cobalt (Co)	27	+2,+3	Co: [Ar] 4s ² 3d ⁷	Co: [Ar] 1_{4s} 1_{1} 1_{1} 1_{1} 1_{1} 1_{1} 1_{3d}
Nickel (Ni)	28	+2	Ni: [Ar] 4s ² 3d ⁸	Ni: [Ar] $1 4s$ $1 1 1 1 1$
Copper (Cu)	29	+1,+2	Cu: [Ar] 4s ¹ 3d ¹⁰	Cu: [Ar] 1_{4s} 1_{4s} 1_{4s} 1_{3d}
Zinc (Zn)	30	+2	Zn: [Ar] 4s ² 3d ¹⁰	Zn: [Ar] 1_{4s} 1_{4s} 1_{4s} 1_{3d}

21

Electron Configuration for Ions

For anions: add extra electrons

• For **cations**: draw the neutral atom, then **subtract** the required number of electrons from the orbital with the highest principal quantum number "n"

1 1A		1s ² ions ns ² np ⁶ ions							18 8A	
H ⁻ 1s ²	2 2A	nd ¹⁰ ions nd ¹⁰ (n+1)s ² ions			13 3A	14 4A	15 5A	16 6A	17 7A	He 1s ²
Li ⁺ 1s ²	Be ²⁺ 1s ²						N ³⁻ 2s ² 2p ⁶	0 ²⁻ 2s ² 2p ⁶	F ⁻ 2s ² 2p ⁶	Ne 2s²2p ⁶
Na ⁺ 2s ² 2p ⁶	Mg ²⁺ 2s ² 2p ⁶	3 3B	11 1B	12 2B	Al ³⁺ 2s ² 2p ⁶		<mark>Р³⁻</mark> 3s ² 3p ⁶	S ²⁻ 3s ² 3p ⁶	Cl ⁻ 3s ² 3p ⁶	Ar 3s²3p ⁶
K* 3s ² 3p ⁶	Ca ²⁺ 3s ² 3p ⁶	Sc ³⁺ 3s ² 3p ⁶	Cu+ 3d ¹⁰	Zn ²⁺ 3d ¹⁰	Ga ⁺ 3d ¹⁰ 4s ² Ga ³⁺ 3d ¹⁰			Se ²⁻ 4s ² 4p ⁶	Br" 4s² 4p ⁶	Kr 4s²4p ⁶
Rb ⁺ 4s ² 4p ⁶	Sr ²⁺ 4s ² 4p ⁶	Y ³⁺ 4s²4p ⁶	Ag+ 4d ¹⁰	Cd ²⁺ 4d ¹⁰	In ⁺ 4d ¹⁰ 5s ²	Sn ²⁺ 4d ¹⁴ 5s ¹⁰			1 ⁻ 5s ² 5p ⁶	Xe 5s²5p ⁶
Cs ⁺ 5s ² 5p ⁶	Ba ²⁺ 5s ² 5p ⁶		Au ⁺ 4f ¹⁴ 5d ¹⁰	Hg ²⁺ 4f ¹⁴ 5d ¹⁰	TI ⁺ 4f ¹⁴ 5d ¹⁰ 6s ² TI ³⁺ 4f ¹⁴ 5d ¹⁰	Pb ²⁺ 4f ¹⁴ 5d ¹⁰ 6s ²	Bi ³⁺			Rn 6s²6p ⁶
Fr ⁺ 6s ² 6p ⁶	Ra ²⁺ 6s ² 6p ⁶									

22

Write the complete electron configuration for Mg²⁺

Write the complete electron configuration for S²⁻

Write the complete electron configuration for Cl⁻

Write the complete electron configuration for Mg²⁺

Mg²⁺: 1s2, 2s2, 2p6,

Write the complete electron configuration for S²⁻

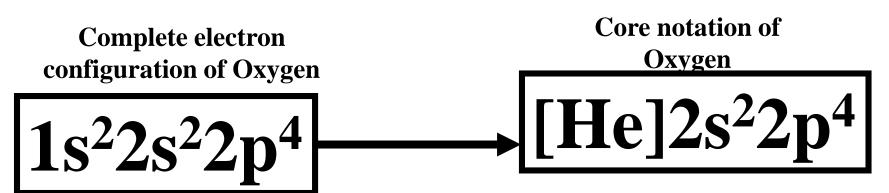
Write the complete electron configuration for Cl⁻

Write the complete electron configuration for Mg²⁺

Write the complete electron configuration for S²⁻

Write the complete electron configuration for Cl⁻

Write the complete electron configuration for Mg²⁺


Write the complete electron configuration for S²⁻

Write the complete electron configuration for Cl⁻

Cl⁻: 1s2, 2s2, 2p6, 3s2, 3p6

Core Notation

- The core notation is used to condense the complete electron configuration.
- To complete a core notation:
- 1. Find the noble gas that comes before the element and write the noble gas in square brackets
- 2. Show the remaining extra electrons of the element as you would on a regular electron configuration

Write the core notation for Chlorine

Write the core notation for Iron

Write the core notation for Zinc

Write the core notation for Chlorine

CI: [Ne] 3s2, 3p5

Write the core notation for Iron

Write the core notation for Zinc

Write the core notation for Chlorine

CI: [Ne] 3s2, 3p5

Write the core notation for Iron

Write the core notation for Zinc

Write the core notation for Chlorine

CI: [Ne] 3s2, 3p5

Write the core notation for Iron

Write the core notation for Zinc

Zn: [Ar] 4s2, 3d10